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Abstract

We propose a new spatiotemporal coupled Lorenz model that consists of three temporal coupling coefficients and three spatial cou
ficients. And we find that self-organized phase transition phenomena appear in this model and manifestations of emergent abilities of
through the implementation to the mutually connected neural networks.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the phenomena of synchronization in coupled
cillator models have generated much interest in many are
mathematical physics[1,2], secure communications[3,4] and
chemical biology[5]. Especially, a matter of great interest
the discovery of an evidence of synchronization phenomen
neurons in perceptive processes in the mammal’s brain[6,7].
In addition, Inoue et al.[8] proposed a model of the process
in cognitive interpretation of the perception of necker’s cu
using the on-off intermittency[9,10] as appears in a couple
chaos oscillator. Further development of study for the cou
nonlinear oscillator models is expected from not only mat
matical physics but also brain sciences[11], neural physiology
[12] and neural computations[13].

On the other hand, the mutually connected neural netw
are often used as a method of artificially making the asso
tive memory that is one of the higher-order functions of hum
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brain’s behaviors. A system known well is the Hopfield netw
model proposed by J.J. Hopfield in 1982[14]. If the Hopfield
model is handled, original contents can be retrieved from im
fect information on memorized contents. This is a function t
looks like the behavior of recollection of our memory: conte
addressable memory[15], which is quite different from the
computer of a so-called von Neumann type. However, the s
where contents are made to be memorized in the network
the stage where they are made to be retrieved are comp
separated, it is difficult to say to simulate a higher-order fu
tion of our human brain.

Considering these situations, recently, the researches o
programmable neural networks[16] are advanced. In this stud
we devise a new spatiotemporal coupled Lorenz model
consists of three temporal coupling coefficientsc1,2,3 and three
spatial coupling coefficientsd1,2,3 and find that self-organize
phase transition phenomena appear through the controllin
the values ofc1,2,3 and d1,2,3, and that proposed model po
sesses the emergent abilities by the model is mounted in
mutually connected neural network systems. Then, we re
because it was able to be confirmed that the systems can ac
the same kind of these function and it is an autonomous
tems.
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2. Coupled Lorenz model

Two continuous-time autonomous dynamical systemsXa

andXb are considered inn-dimensional Euclidean spaceRn,
Ẋa = F (Xa), Ẋb = F (Xb). Here,F is considered to be th

Lorenz system[17] for both with n = 3, F
def= (f1 f2 f3)

T ,
where individual vector components areXa = (x1 x2 x3)

T ,
Xb = (x4 x5 x6)

T . These are bi-directionally coupled and i
dicated as below. Here, 0< c < 1 is a coupling coefficient.

(1)

(
ẋ1
ẋ2
ẋ3

)
=

(
σ(x2 − x1)

x1(r − x3) − x2
x1x2 − bx3

)
+ c

(
x4 − x1
x5 − x2
x6 − x3

)
,

(2)

(
ẋ4
ẋ5
ẋ6

)
=

(
σ(x5 − x4)

x4(r − x6) − x5
x4x5 − bx6

)
− c

(
x4 − x1
x5 − x2
x6 − x3

)
.

In a mutually coupled oscillator system for Eqs.(1), (2),
at least one of the maximum Lyapunov exponent forF

is positive and the temporal coupling coefficientc is suffi-
ciently small for Xa and Xb, Xa and Xb depict indepen-
dent trajectories, although whenc is greater than certai
value even if|Xa(0) − Xb(0)| > 0, the two trajectories ar
entrained bi-directionally and synchronized after a mom
the two then depict exactly the same trajectory. This me
that the coupled oscillator system for Eqs.(1), (2) is in 6-
dimensional space, although the two trajectories are constra
to 3-dimensional invariant manifold[2], and near this syn
chronous/desynchronous boundary, on-off intermittent ch
where the laminar phase and burst phase appear inte
tently is observed atXa(t) − Xb(t). With in the laminar
phase where the two trajectories are completely synchron
an attractor is constrained to one plane of(x1, x3), identi-
cally, x1 − x4 becomes zero, which like the top figure
Fig. 1. These hyperplanes where attractor is constraine
the laminar phase are the(x1, x2) plane and(x2, x3) plane
in addition to the(x1, x3) plane. In thec = 0.4, an attractor
in the (x1 − x4, x2 − x5, x3 − x6) space is indicated graph
ically in the bottom figure ofFig. 1. The trajectories the
two are completely synchronized converge to one poin
(x1 − x4, x2 − x5, x3 − x6) = (0,0,0), although when on-of
intermittent chaos occurs, they repeatedly have irregular
unpredictable intermittency with wandering into 3-dimensio
space(x1 −x4, x2 −x5, x3 −x6) from one point of(0,0,0) like
the bottom figure ofFig. 1.

3. A spatiotemporal coupled Lorenz model (STCL model)

The Lorenz model itself is a model of the smooth ma
fold in 3-dimensional space. When the coupled Lorenz attra
leaves invariant manifold, it simultaneously leaves the three
perplanes. Thus, the author has considered this to be a m
with three nonlinear oscillators:{X,Y ,Z} = {x1 − x4, x2 − x5,

x3 − x6} is coupled to each of the three by coupling of t
coupled Lorenz model spatially as well and a new device
considered. This is indicated to the schematically inFig. 2and
Eqs.(3) to (6), where 0< c1,2,3 < 1 are temporal coupling co
t,
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Fig. 1. An attractor of the coupled Lorenz model atc = 0.4, t = 0–250 [s],
�t = 0.01 [s]. Top: x1 − x4 versus (x1, x3) plane, bottom:x1 − x4
versus x2 − x5 versus x3 − x6, where σ = 10, b = 8/3, r = 28,
x1(0) = x2(0) = x3(0) = 1.00,x4(0) = x5(0) = x6(0) = 1.01. (These are com
mon specifications in this study.)

Fig. 2. Spatiotemporal coupled Lorenz model: a network model-based de
{X,Y ,Z} = {x1 − x4, x2 − x5, x3 − x6}.

efficients, 0< d1,2,3 < 1 are spatial coupling coefficients

(3)

(
ẋ1
ẋ2
ẋ3

)
=

(
σ(x2 − x1)

x1(r − x3) − x2
x1x2 − bx3

)
+ D∗

(
x4 − x1
x5 − x2
x6 − x3

)
,

(4)

(
ẋ4
ẋ5
ẋ6

)
=

(
σ(x5 − x4)

x4(r − x6) − x5
x4x5 − bx6

)
− D∗

(
x4 − x1
x5 − x2
x6 − x3

)
,

D∗ = D =
(

c1 d2 d3
d1 c2 d3
d1 d2 c3

)
:

(5)excitatory–excitatory connection,

D∗ = D̃ =
(

c1 d2 1− d3
1− d1 c2 d3

d1 1− d2 c3

)
:

(6)excitatory–inhibitory connection.
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Fig. 3. Information distribution are plotted in horizontald(Z+X)/cY versusd(Y +Z)/cX versus verticald(X+Y )/cZ, left: d/c = 0.3/0.23, right:d/c = 0.1/0.38,
wheret = 0–1000 [s],�t = 0.01 [s].

Fig. 4. Information distribution are plotted in horizontal(Z + X)/Y versus(Y + Z)/X versus vertical(X + Y )/Z, left: d/c = 0.3/0.23, right:d/c = 0.1/0.38,
wheret = 0–1000 [s],�t = 0.01 [s].
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First, the uniform spatial coupling coefficientd1 = d2 =
d3 = d and the uniform temporal coupling coefficientc1 =
c2 = c3 = c is considered. Andc and d differ in order to
examine the influence ofc and d that affect the flow of in-
formation between the three nonlinear oscillators:{X,Y,Z} =
{x1 − x4, x2 − x5, x3 − x6} and the intermittency observed is a
most the same, the ratio ofc terms andd terms is plotted in
Figs. 3 and 4. With regard to terms including the value ofc and
d like Fig. 3, the information flow between channels is grea
with a largerd/c, although when plotting the same data wi
out the value ofc andd like Fig. 4, this difference is not note
for the most part. That is, thec andd control on-off intermit-
tent chaos, although they have no direct effect on individ
vectors. Thec and d work as independent parameters wi
out providing internal disturbance. Thus, thec andd are not
constants and can be incorporated as coefficients that ch
with time and as functions of{X,Y,Z}. This indicates that the
can be used as appropriate emergent parameters from th
side.

Next, the difference in behavior of the model with t
case where the excitatory–excitatory connection matrix and
excitatory–inhibitory connection matrix is used are shown
Figs. 5 and 6. These figures show the behaviors of{x1 − x4,

x2 − x5, x3 − x6} to change of the values ofd at the value of
certainc. (Only x1 − x4 is illustrated in the figures. Each fig
ure is plotted int = 0 ∼ 105 [s], �t = 0.01 [s],d = 0 ∼ 1. d is
changing linearly witht whered = 0.00001t .)

When the excitatory–excitatory connection matrix is u
(EEC model), as shown inFig. 5, if the value ofc becomes
large, the value ofd becomes small with which the{x1 −
x4, x2 − x5, x3 − x6} synchronizes, and an on-off intermitte
domain also becomes narrow, then,d works as an effect like a
l

ge

in-

e

switch. As shown inFig. 6, when the excitatory–inhibitory con
nection matrix is used (EIC model), the domain ofd separates
to two places where the{x1−x4, x2−x5, x3−x6} does not syn-
chronize. Furthermore, it should mention specially as show
Fig. 6, in the domain of certainc, when only the value ofd
is changed, self-organized phase transition phenomena a
like: chaos phase→ limit cycle phase→ intermittent chaos
phase→ laminar phase.

4. Construction of emergent subsystems

4.1. Neural spike trains generator

In the proposed model, we regard the three nonlinear o
lators:{X,Y,Z} = {x1 − x4, x2 − x5, x3 − x6} as three neurons
First, the synchronization phenomena are measured by th
ference∆i(t) = |xi+3(t) − xi(t)|, wherei = 1,2,3. Next, the
neurons are introduced using∆i(t) as

ui(t) = 1

1+ exp[−zi(t)/z0] , zi(t) =
(

ε

∆i(t)

)
− 1:

(7)analog model,

where the state ofui(t) have the continuous value[0,1] of the
ith neuron at timet , z0 is the analog parameter, andε is the
criterion parameter of the synchronization[18,19]. This analog
neuron becomes the binary neuronui(t) which have two state
of {0,1} if z0 → 0 then

(8)ui(t) =
{

1 if ∆i(t) < ε,

0 if ∆i(t) � ε,
digital model.
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Fig. 5. x1 − x4 versusd , excitatory–excitatory connection, top to botto
c = 0.2, c = 0.3, c = 0.4.

4.2. Abstract coincidence detector model (ACD model)

Fujii et al.[20] have proposed an abstract coincidence de
tor model (ACD model). The essences of this model: (1) E
neuron is an excitatory neuron which does not have memory
fires by the simultaneity of a momentary incidence spike. (2
does not have any inhibitory neuron. (3) Network structure d
not assume any specific structure. (4) All synaptic weight is
to one. (5) A certain transfer delay time which exists befo
hand is between neurons.

A schematic illustration of ACD model shows inFig. 7, and
we interpret this model to Eq.(9) when the above (5). is ne
glected, wherewi0 = 1 and our model’sk = 3.

(9)Di(t) =




1 if N = ∑k
i=1 wi0ui(t) = k or

D = ∏
i wi0ui(t) = 1,

0 if N = ∑k
i=1 wi0ui(t) < k or

D = ∏
i wi0 ui(t) �= 1.
-
h
ut
t
s
t

-

Fig. 6. x1 − x4 versusd , excitatory–inhibitory connection, top to bottom
c = 0.2, c = 0.3, c = 0.4.

Fig. 7. Schematic illustration of ACD model.

4.3. Self-organized synchronization phenomena of EIC model

The spike trains are generated by using Eq.(8) from three
neurons{X,Y,Z}, and the ACD output that is the output f
them to have passed Eq.(9) is shown inFig. 8as the ratio of the
number of all generated spikes to all calculated steps, and a
ratio of the number of synchronized spikes of three neuron
all generated spikes.

WhenFig. 8 is compared with bottom figure ofFig. 6, three
neurons{X,Y,Z} have synchronized remarkably in the boun
ary regions of the limit cycle phase (which is a blank area
Fig. 8) and each chaos phases. In other words, a high info
tion processing ability is potential in these regions. Theref
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Fig. 8. Histogram of the ratio of the number of all generated spikes to all
culated steps (white-bar) and the ratio of the number of synchronized spik
three neurons to all generated spikes (black-bar) versusd of the EIC model,
c = 0.4, t = 0–1000 [s],�t = 0.01 [s].

Fig. 9. Histogram of the ratio of the number of all generated spikes to all
culated steps (white-bar) and the ratio of the number of synchronized spik
three neurons to all generated spikes (black-bar) versuswij of the EIC model,
c = 0.4, θi = 0, t = 0–1000 [s],�t = 0.01 [s].

in our system, the spatial coupling coefficientsdi of the STCL
model is regulated dynamically by the following way like t
Hopfield model, whenci(t) = const,

(10)di(t) =
n∑

j=1

wij uj (t) − θi(t),

whereθi(t) is the threshold value,wij (= wji) is the synaptic
weight betweenith andj th neurons andwii = 0.

Then, the difference of synchronization behavior by diff
ence of the synaptic weightwij disappears almost accordin
to this method asFig. 9 shows. It is because the feedba
of the spatial coupling coefficientsdi(t) hang dynamically in
chaotic attractor’s behavior this is because the coefficients
controlled by using the ignitions of the neurons{X,Y,Z}.

5. Construction of emergent systems

5.1. DDN system and ADN system

Our emergent system is presented schematically inFig. 10.
The n subsystems (STCL models+ ACD models) are con
nected to the external input of the mutually connected ne
network through the connecting weightKi with an external pat
tern. The state at the discrete timet of the ith neuronvi(t) is
-
of

-
of

re

l

Fig. 10. Schematic illustration of the proposed emergent systems.

defined by

(11)vi(t + 1) = sign

[
n∑

j=1

Jij vj (t) + Kik
ext
i Si(t)

]
,

(12)Si(t) = 2Di(t) − 1.

The synaptic weightJij is given as the conventional autocorr
lation associative memory,

(13)Jij =
{ 1

n

∑p

µ=1 ξ
µ
i ξ

µ
j

(
1− δ[i, j ]),

Jji ,

to embedp patternsξµ, whereξ
µ
i is theith component ofξµ

which takes binary value{−1,1}, and this decision ofJij is
final. Thekext

i is an external input pattern which takes bina
value {−1,1} and 0< Ki < 1 is external connecting weigh
The ξ

µ
i are vectors memorized in this network beforeha

however,kext
i is an unknown vector for the network. Her

sign[x] = 1 (x � 0) or −1 (x < 0), δ[i, j ] = 1 (i = j) or 0
(i �= j).

There are two types in this system. One of these is a dig
digital network system (a DDN system) that is mounted to
digital subsystems which consist of digital neuron mode
Eq.(8), another system is an analog–digital network system
ADN system) that is mounted to the analog subsystems w
consist of analog neuron model of Eq.(7). Both these types ar
auto-correlation type associative memory models. Even tho
having no learning synapse weight systems in these model
models show several autonomous dynamics of retrieving
bedded patterns by exciting an external input pattern from
subsystems. Next section shows these results.

5.2. Dynamics of the proposed systems

It shows the specifications for the numerical simulatio
Concerning aboutn subsystems which take the EIC mo
els; σ = 10, b = 8/3, r = 28, c1 = c2 = c3 = 0.4, d1,2,3 =
variables,wij = −1/3, θi = −2/3 and discrete time�t for nu-
merical simulations by Runge–Kutta method:�t = 0.01 [s].
The criterion parameter takesε = 0.005 at DDN system an
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Fig. 11. Embedded patterns:ξ
µ
i

, left to right,µ = 1, 2, 3 and an external inpu
pattern:kext

i
.

ε = 0.02 at ADN system so that frequency of output spik
from subsystem might almost become equal to DDN syst
and the analog parameter takesz0 = 0.01. Concerning about
main system; number of neuronsn = 25, number of embed
ded pattersp = 3. These embedded patternsξ

µ
i and an externa

input patternkext
i show inFig. 11. These vector are not orthog

onal each other. And, this neural network system’s feature
the desynchronized neuron models. Therefore, we introduc
time delayτi = m · i · �t in the eachith neuron. Now, in this
report, it takesm = 1 and external connecting weightKi takes
constant value which is not depended by neuron indexi.

The results are indicated inFigs. 12 and 13. First, concerning
aboutFig. 12of DDN system, top figure which takesKi = 0.2,
the system behaves like an ordinary associative memory m
One of the embedded memory patterns is retrieved by in
conditions, and it is stabilized according to them. In this
ure, this is a case of the system retrieved the pattern ofµ = 1.
Next, bottom figure which takesKi = 0.9, an external inpu
patternkext

i and this reversed pattern are repeated irregula
Any embedded memory patterns are not retrieved. Of cou
it finds also these same behaviors at ADN system. Concer
aboutFig. 13, both of DDN system and ADN system whic
takesKi = 0.7, all embedded memory patterns are irregula
retrieved by the external stimulation. Specifically, the emb
ded memory patternsµ = 1, 2, 3 are retrieved att = 2, 10,
32 [s], respectively in the DDN system, andt = 5, 12, 96 [s],
respectively in the ADN system. Moreover, the several new
terns which the embedded memory patterns and the ext
input patterns compounded are also generated.

What should make a special mention here, the synaptic
nection weightJij on the network has not been renewed in t
model at all. Generally, in the associative memory system
some learning algorithms are not added to Eq.(13) by using
the plasticity of the synapse to retrieving two or more emb
ded vectors in the time series, such as autonomous dyna
of retrieving are not caused. This proposed system is a m
of the autocorrelation associative memory. However, these
bedded patterns can be made unstable by external stimula
In other words, the trajectories cannot stay for a long time
one attractor and wander between these embedded attract
external stimulation which is generated by subsystems that
sist of STCL models plus ACD models. This is a phenome
that looks like “chaotic itinerancy” that Tsuda[21] discovered.
Moreover, it was a system in the research of Aihara et al.[22]
based on the nerve model though a similar phenomenon
cited. However, the Lorenz chaos of this model is quite un
lated to neurophysiology. It is suggested that these phenom
are not only the chaos of the nervous systems but also univ
characteristics of the chaos that is generated by coupled no
ear oscillator systems.
,
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Fig. 12. Retrieving pattern dynamics of DDN system (ε = 0.005),
t = 0–100 [s]. Top:Ki = 0.2, bottom:Ki = 0.9.

Next, we investigated the influence that the difference of
criterion parameterε gave to this network. The output of th
subsystem as the external stimulation give an unknown ve
is one spike train to which the spike that synchronizes spat
is taken out by using the ACD model from the three trains fi
from the STCL model. The parameter that decides the thres
that generates these spike trains isε in the STCL model. Wha
influence does the value ofε give to this network?Fig. 14is the
same condition asFig. 13excludingε. And, the value ofε was
widened from 0.005 to 0.02 for the DDN system, and the valu
of ε was widened from 0.02 to 0.04 for the ADN system.

It is understood that the network does not react to it tho
external stimulation is input whenε is widened as thisFig. 14
shows. In other word, this network model’s recollection d
not depend on an arbitrary external input spike train but
certainly driven by synchronous phenomenon of the three
rons{X,Y,Z} in subsystems.

6. Summary

We proposed a new Lorenz model with an excitato
excitatory connection matrix (EEC model) or an excitato
inhibitory connection matrix (EIC model) which consists of t
three temporal coupling coefficientsc1,2,3 and three spatial cou
pling coefficientsd1,2,3. This spatiotemporal coupled Loren
model is a model that synchronizes three nonlinear oscilla
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Fig. 13. Retrieving pattern dynamics atKi = 0.7, t = 0–100 [s]. Top: DDN
system (ε = 0.005), bottom: ADN system (ε = 0.02).

The c1,2,3 and d1,2,3 are parameters independent of each
m’s vector, and on-off intermittency observed in this mode
controlled byc1,2,3 andd1,2,3. In this study, we discover tha
self-organized phase transition phenomena appear in this m
in changing the values ofc1,2,3 andd1,2,3.

We introduced an abstract coincidence detector model (A
model) to evaluate the spatial synchronization of neur
and introduced the Hopfield model to decide the three sp
coupling coefficientsd1,2,3 which govern emergent abilities
It showed that boundary regions of each phase of the
organized phase transition phenomena which appear in the
posed model have information processing ability, and claim
that a proposed model is useful to an architecture for emer
subsystems for implementation of an emergent system.

We proposed an emergent system that is a mutually
nected neural network model which is mounted to the s
tiotemporal coupled Lorenz model-based subsystems. T
are two types in this system. One of these is a digital–dig
network system (a DDN system), another model is an ana
digital network system (an ADN system). Both these types
auto-correlation type associative memory model. Even tho
having no learning synapse weight systems in these syst
the models show several autonomous dynamics of retrie
embedded patterns by stimulating an external input pa
from the subsystems.
-
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Fig. 14. Retrieving pattern dynamics atKi = 0.7, t = 0–100 [s]. Top: DDN
system (ε = 0.02), bottom: ADN system (ε = 0.04).

7. Outlook

In next paper, we will propose a model of controlling of t
proposed system that is called “self-reference model”. It is
dicated to Eq.(14) which is modified based on Eq.(12). Here,
st1 andst2 are specifications of the model.

(14)Si(t) =



2Di(t) − 1 if t � st1,

vi(t) if st1 < t � st2,

2Di(t) − 1 if st2 < t.

By using this model, we have found a dynamics of the propo
system quite changing after the self-reference. We will re
the detail in next paper.
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