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Abstract

We propose a new spatiotemporal coupled Lorenz model that consists of three temporal coupling coefficients and three spatial coupling coe
ficients. And we find that self-organized phase transition phenomena appear in this model and manifestations of emergent abilities of this mode
through the implementation to the mutually connected neural networks.
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1. Introduction brain’s behaviors. A system known well is the Hopfield network
model proposed by J.J. Hopfield in 19B2]. If the Hopfield

Recently, the phenomena of synchronization in coupled OSr_nodel is handled, original contents can be retrieved from imper-

iltor models e generted much ierest n many area 4§ IOTALEn o memorzegconients T o ncton b
mathematical physickl,2], secure communicatior8,4] and addressable memofl5], which is quite different f)rlbm the
chemical biology[5]. Especially, a matter of great interest is ' q

the discovery of an evidence of synchronization phenomena %rgrpeutcec:n(ifeitzoa-l(rzsllﬁg(;/:?ol\ll)e:rr?wirr]r?otr)ilsgd Tnomzvﬁgtwgritzglg
neurons in perceptive processes in the mammal’'s H&iA.

In addition, Inoue et a8] proposed a model of the processesthe stage where they are made to be retrieved are completely

in cognitive interpretation of the perception of necker’s Cubeseparated, it is difficult to say to simulate a higher-order func-

. . . . tion of our human brain.
gﬁzgstggcﬁgtgf ?&?{&fﬁggﬁfﬂ:ﬁt i?ifﬂs ]:gr?h(;oggllje?e Considering these situations, recently, the researches of the
. o €lop y P rogrammable neural networKi6] are advanced. In this study,
nonlinear oscillator models is expected from not only mathe-

: ) : . ; we devise a new spatiotemporal coupled Lorenz model that
matical physics but also brain scien¢gs], neural physiology  ;qnsists of three temporal coupling coefficients 3 and three
[12] and neural computatiorj$3]. iy

spatial coupling coefficientg; 2 3 and find that self-organized
On the other hand, the mutually connected neural network '

. X i Bhase transition phenomena appear through the controlling of
are often used as a method of artificially making the associanq \/41yes o123 andds 23, and that proposed model pos-

tive memory that is one of the higher-order functions of humargegges the emergent abilities by the model is mounted in the

mutually connected neural network systems. Then, we report
E—— - ) - . because it was able to be confirmed that the systems can achieve
E-mail addresses: info@tetsujiemura.copemura@kinjo-u.ac.jp . . .
(T. Emura). the same kind of these function and it is an autonomous sys-
URL: http://www.tetsujiemura.com tems.
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2. Coupled L orenz model

Two continuous-time autonomous dynamical systeXns
and X, are considered in-dimensional Euclidean spad¢’,
X, =F(X,), X, = F(X}). Here, F is considered to be the

Lorenz systen{17] for both withn =3, F def (f1 f2 )T,
where individual vector components ai, = (x1 x2 x3)7,
X, = (x4 x5 x6)” . These are bi-directionally coupled and in-
dicated as below. Here, 9 ¢ < 1 is a coupling coefficient.

X1 o(x2 — x1) X4 — X1
X2 | = x1(r—x3)—x2 | +c|lx5—2x2], 1)
X3 x1x2 — bx3 X6 — X3

X4 o (x5 — x4) X4 — X1
X5 )=\ xa(r —xg) —x5 | —c| x5 —x2 | . (2)
X6 xax5 — bxg X6 — X3

In a mutually coupled oscillator system for Edg), (2),
at least one of the maximum Lyapunov exponent ®r
is positive and the temporal coupling coefficientis suffi- x5 2
ciently small for X, and X,, X, and X, depict indepen-
dent trajeCt(.)rieS' although when is greater .than .Certain Fig. 1. An attractor of the coupled Lorenz modelcat 0.4, r = 0-250 [s]
value. even .|f|.Xa(O.) — X,(0)| > 0, the t_wo trajectories are , * "0 0) [s]. Top: x; — x4 versus (xy.xs) plane, b(’)ttom:n - x4’
entrained bi-directionally and synchronized after a momentyersys v, — x5 versus xz — xg, where o = 10, b = 8/3, r = 28,
the two then depict exactly the same trajectory. This means; (0) = x»(0) = x3(0) = 1.00,x4(0) = x5(0) = x(0) = 1.01. (These are com-
that the coupled oscillator system for Eq4), (2) is in 6-  mon specifications in this study.)
dimensional space, although the two trajectories are constrained
to 3-dimensional invariant manifol2], and near this syn-
chronous/desynchronous boundary, on-off intermittent chaos
where the laminar phase and burst phase appear intermit-
tently is observed atX,(t) — X, (). With in the laminar
phase where the two trajectories are completely synchronized,
an attractor is constrained to one plane (of, x3), identi-
cally, x1 — x4 becomes zero, which like the top figure of
Fig. L These hyperplanes where attractor is constrained at
the laminar phase are thej, x2) plane and(xz, x3) plane
in addition to the(xy, x3) plane. In thec = 0.4, an attractor _ . _
in the (x1 — x4, x2 — x5, x3 — xg) Space is indicated graph- Fig. 2. Spatiotemporal coupled Lorenz model: a network model-based device,
. . - . . . {X,Y,Z}={x1 — x4, x2 — X5,X3 — Xg}.
ically in the bottom figure ofFig. 1 The trajectories the
?;vf_a;i zgrjp;:tig_siz;: h=ro(r(1)|’zoei %)?(;Tt\;]%rgshtsvhoenne Or;]c_)g; Ofefficients, 0< d1,2,3 < 1 are spatial coupling coefficients

intermittent chaos occurs, they repeatedly have irregular and .

x1-x4

x3-x6

unpredictable intermittency with wandering into 3-dimensional ).Cl _ Xl((jr(izx;)xi)xz + D i: : 2 3)
space(x1 — x4, x2 — x5, x3 — xg) from one point of(0, 0, 0) like P Y10 — bxa X6 — xa ’
the bottom figure oFig. 1
X4 o (x5 — x4) X4 — X1
: s | = — — — D* —
3. A spatiotemporal coupled Lorenz model (STCL model) 5 x4(r =) — x5 w2
X6 x4x5 — bxg X6 — X3
4)
The Lorenz model itself is a model of the smooth mani- c1 do ds
fold in 3-dimensional space. When the coupled Lorenz attractop* = p = d; ¢» d3 | :
leaves invariant manifold, it simultaneously leaves the three hy- di do c3
perplanes. Thus, the author has considered this to be a mOdelexcitatory—excitatory connection (5)

with three nonlinear oscillator$X, Y, Z} = {x1 — x4, X2 — x5,
x3— xg} is coupled to each of the three by coupling of the ‘1 d2  1-ds
coupled Lorenz model spatially as well and a new device waf =DP=(1-d1 dz )

considered. This is indicated to the schematicallfig. 2 and di  l-dz 3

Egs.(3) to (6) where O< ¢1.23 < 1 are temporal coupling co-  excitatory—inhibitory connection (6)
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Fig. 3. Information distribution are plotted in horizont&lZ + X) /cY versusi(Y + Z) /c X versus verticall (X +Y)/cZ, left: d /c = 0.3/0.23, right:d /c = 0.1/0.38,
wheret = 0-1000 [s],Ar = 0.01 [s].
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Fig. 4. Information distribution are plotted in horizont@ + X)/Y versus(Y + Z)/ X versus verticalX + Y)/Z, left: d/c = 0.3/0.23, right:d/c = 0.1/0.38,
wherer = 0-1000 [s],Ar = 0.01 [s].

First, the uniform spatial coupling coefficiedy = do switch. As shown irFig. 6, when the excitatory—inhibitory con-
d3 = d and the uniform temporal coupling coefficieat = nection matrix is used (EIC model), the domaindo§eparates
c2 = c3 = ¢ is considered. And: and d differ in order to  totwo places where thigr; — x4, x2 — x5, x3— xg} does not syn-
examine the influence of andd that affect the flow of in- chronize. Furthermore, it should mention specially as shown in
formation between the three nonlinear oscillatges; Y, Z} = Fig. 6, in the domain of certair, when only the value ofl
{x1 — x4, x2 — x5, x3 — xg} and the intermittency observed is al- is changed, self-organized phase transition phenomena appear
most the same, the ratio ofterms andd/ terms is plotted in  like: chaos phase> limit cycle phase— intermittent chaos
Figs. 3 and 4With regard to terms including the valueoénd  phase— laminar phase.
d like Fig. 3, the information flow between channels is greater
with a largerd/c, although when plotting the same data with- 4 Construction of emergent subsystems
out the value ot andd like Fig. 4, this difference is not noted
for the most part. That is, theandd control on-off intermit- 1. Neural spike trai i
tent chaos, although they have no direct effect on individuafl' - Neural spiketrains generator
vectors. Thec andd work as independent parameters with-
out providing internal disturbance. Thus, theindd are not In the proposed model, we regard the three nonlinear oscil-
constants and can be incorporated as coefficients that chanfgors:{X. Y, Z} = {x1 — x4, x2 — x5, x3 — x¢} as three neurons.
with time and as functions dfx, ¥, Z}. This indicates that they First, the synchronization phenomena are measured by the dif-
can be used as appropriate emergent parameters from the fi§fenced; (t) = |x;+3(1) — x; ()|, wherei = 1,2, 3. Next, the

side. neurons are introduced usiayg (¢) as
Next, the difference in behavior of the model with the
case where the excitatory—excitatory connection matrix and thgi (t) = 1 (1) = ( € ) _
excitatory—inhibitory connection matrix is used are shown in 1+ exp—zi(1)/zol Ai(1)
Figs. 5 and 6 These figures show the behaviors{of — x4, analog model (7)

x2 — x5, x3 — xg} to change of the values af at the value of
certainc. (Only x1 — x4 is illustrated in the figures. Each fig- where the state af; () have the continuous value, 1] of the
ure is plotted i =0~ 10° [s], Ar =0.01[s],d =0~ 1.d is  ith neuron at time, zg is the analog parameter, aads the
changing linearly witlt whered = 0.0000%.) criterion parameter of the synchronizatid®,19] This analog
When the excitatory—excitatory connection matrix is usedneuron becomes the binary neungrir) which have two states
(EEC model), as shown ifig. 5, if the value ofc becomes of {0, 1} if zo — O then
large, the value off becomes small with which théx; —
x4, X2 — x5, x3 — Xg} synchronizes, and an on-off intermittent () = { 1 ifA;(0) <e,
1

. . . digital model. 8
domain also becomes narrow, th@hworks as an effect like a 0 ifA;(t)>e, g ®)
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Fig. 5. x1 — x4 versusd, excitatory—excitatory connection, top to bottom,
¢c=0.2,c=03,c=04.
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Fig. 6. x1 — x4 versusd, excitatory—inhibitory connection, top to bottom,
¢c=0.2,c=03,c=04.

ufn)
4.2. Abstract coincidence detector model (ACD model) e Wi
D(n)
Fujii et al.[20] have proposed an abstract coincidence detec-
tor model (ACD model). The essences of this model: (1) Each —

neuron is an excitatory neuron which does not have memory but
fires by the simultaneity of a momentary incidence spike. (2) It

does not have any inhibitory neuron. (3) Network structure doei

not assume any specific structure. (4) All synaptic weight is set
to one. (5) A certain transfer delay time which exists before-

Fig. 7. Schematic illustration of ACD model.

3. Sdf-organized synchronization phenomena of EIC model

hand is between neurons.

A schematic illustration of ACD model shows lig. 7, and
we interpret this model to Eq9) when the above (5). is ne-
glected, wherev;o = 1 and our model's = 3.

1 ifN=Y% wiou;(r)=k or
D =[] wiou;(t) =1,

0 ifN= Zf.‘zl wiou; (1) <k or
D =]T; wiou; () # 1.

D;(t) = 9

The spike trains are generated by using @).from three
neurons{X, Y, Z}, and the ACD output that is the output for
them to have passed H®) is shown inFig. 8as the ratio of the
number of all generated spikes to all calculated steps, and as the
ratio of the number of synchronized spikes of three neurons to
all generated spikes.

WhenFig. 8is compared with bottom figure &fig. 6, three
neurong X, Y, Z} have synchronized remarkably in the bound-
ary regions of the limit cycle phase (which is a blank area in
Fig. 8 and each chaos phases. In other words, a high informa-
tion processing ability is potential in these regions. Therefore,



310 T. Emura/ Physics Letters A 349 (2006) 306-313

Excitatory Inhibitory Connection Model STCL Models
) igia g Ix) ACD Models
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Fig. 8. Histogram of the ratio of the number of all generated spikes to all cal- 7 th Neuron /’
culated steps (white-bar) and the ratio of the number of synchronized spikes of State: {-1,1}
three neurons to all generated spikes (black-bar) vefsosthe EIC model,

¢=0.4,r=0-1000 [s].Ar = 0.01 [s]. Mutually Connected Neural Network

Excitatory C tion Weight on the EIC Model . . .
100 Xerfaloly “onnection Weight on e oce ) Fig. 10. Schematic illustration of the proposed emergent systems.
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80 (@Sync'edRatio | defined by
70
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vi(t+1) = sign|: Z Jijvi(t) + Kik®s; (z)} , (11)
j=1
S;(t) =2D;(t) — 1. (12)

Total Firing Ratio [%]
Synchronized Ratio [%]

The synaptic weighf;; is given as the conventional autocorre-
lation associative memory,

5= { Lyr glet(1-oli j). 13
Jjis

Fig. 9. Histogram of the ratio of the number of all generated spikes to all cal-

culated steps (white-bar) and the ratio of the number of synchronized spikes of . .
: to embedp patternst#, whereg” is theith component of#
three neurons to all generated spikes (black-bar) versusf the EIC model, p P ! i p

c=04,6; =0,1=0-1000 [s],Ar = 0.01 [s]. which takes binary valu¢—1, 1}, and this decision of/;; is
final. Thek®™" is an external input pattern which takes binary

in our system, the spatial coupling coefficiedtsof the STCL ~ Vvalue L—l, 1} and 0< K; < 1 is external connecting weight.

model is regulated dynamically by the following way like the The §;~ are vectors memorized in this network beforehand,

Hopfield model, whem; () = const, however, k¥ is an unknown vector for the network. Here,
signx]=1 (x>0 or -1 (x <0),d8[i,jl=1@G=j)or0
N (i # J).
dit) = Z wijuj (1) = 6i(1), (10) There are two types in this system. One of these is a digital—
=1 digital network system (a DDN system) that is mounted to the
wheref; (¢) is the threshold valuey;; (= wj;) is the synaptic  digital subsystems which consist of digital neuron model of
weight betweerith and jth neurons anab;; = 0. Eq.(8), another system is an analog—digital network system (an

Then, the difference of synchronization behavior by differ- ADN system) that is mounted to the analog subsystems which
ence of the synaptic weight;; disappears almost according consist of analog neuron model of §@). Both these types are
to this method ag~ig. 9 shows. It is because the feedback auto-correlation type associative memory models. Even though
of the spatial coupling coefficient (r) hang dynamically in  having no learning synapse weight systems in these models, the
chaotic attractor’'s behavior this is because the coefficients amaodels show several autonomous dynamics of retrieving em-
controlled by using the ignitions of the neurdids, Y, Z}. bedded patterns by exciting an external input pattern from the
subsystems. Next section shows these results.
5. Construction of emergent systems
5.2. Dynamics of the proposed systems
5.1. DDN systemand ADN system
It shows the specifications for the numerical simulations.
Our emergent system is presented schematicaliign10 Concerning about: subsystems which take the EIC mod-
The n subsystems (STCL models ACD models) are con- els;o =10,b=8/3,r =28,c1=c2=c3=04,d123=
nected to the external input of the mutually connected neurafariablesw;; = —1/3,6; = —2/3 and discrete timé for nu-
network through the connecting weigkit with an external pat- merical simulations by Runge—Kutta methofl: = 0.01 [s].
tern. The state at the discrete timef the ith neuronv;(¢) is  The criterion parameter takes= 0.005 at DDN system and
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FCsE
20F
Fig. 11. En:bedded patterr(#‘.‘, left to right, « = 1, 2, 3 and an external input .
pattern:*", i‘é "
g
310f
e = 0.02 at ADN system so that frequency of output spikes #~
from subsystem might almost become equal to DDN system,
and the analog parameter takgs= 0.01. Concerning about a >
main system; number of neurons= 25, number of embed-
ded patterp = 3. These embedded patteﬂj‘sand an external % 20 20 <0 20 T00
input pattern’c?"t show inFig. 11 These vector are not orthog- Time [sec]
onal each other. And, this neural network system'’s feature is in ; ;
the desynchronized neuron models. Therefore, we introduced a >} T 7L T T L T T
time delayr; =m - i - At in the each'th neuron. Now, in this T T T ]
report, it takesn = 1 and external connecting weigkt takes ]
constant value which is not depended by neuron iridex 5 = -- — I - ]
The results are indicated Figs. 12 and 13First, concerning 215 — — -
aboutFig. 12of DDN system, top figure which take§ = 0.2, s I - - T T e vt - =
the system behaves like an ordinary associative memory model. 5.} — — -
One of the embedded memory patterns is retrieved by initial N e e T
conditions, and it is stabilized according to them. In this fig- 5: —_— — —
ure, this is a case of the system retrieved the patteyn-ofl. — — -
Next, bottom figure which take&; = 0.9, an external input T T T T T T T
patternk®™" and this reversed pattern are repeated irregularly. % 20 20 50 30 100
Any embedded memory patterns are not retrieved. Of course, Time [sec]

it finds also these same behaviors at ADN system. Concernin o ‘

aboutFig. 13 both of DDN system and ADN system which zE-O—llzo.O [F;f ‘#j;!;}? =p(i tzteg;ttg%r.]?:% 9°f DDN - system £ 0.005).
takesk; = 0.7, all embedded memory patterns are irregularly ' ' R
retrieved by the external stimulation. Specifically, the embed-

ded memory pattema =1, 2, 3 are retrieved at=2, 10, criterion parametet gave to this network. The output of the

32 [s], respectively in the DDN system, ane= 5, 12, 96 [9], . . )
. i subsystem as the external stimulation give an unknown vector
respectively in the ADN system. Moreover, the several new pat-

terns which the embedded memory patterns and the externgl e spike train _to which the spike that synchronizes _spat_|a||y
. IS taken out by using the ACD model from the three trains fired
input patterns compounded are also generated.

What should make a special mention here. the svnantic co from the STCL model. The parameter that decides the threshold
. : b ' ynaplic con, . generates these spike trains is the STCL model. What
nection weight/;; on the network has not been renewed in this; fluence does the value efgive to this networkFig. 14is the
model at all. Generally, in the associative memory systems, i’ " . . ’
some learning algorithms are not added to Bi@) by usin same condition aBig. 13excludinge. And, the value ot was
g ag y 9 widened from (05 to Q02 for the DDN system, and the value

the plasticity of the synapse to retrieving two or more embed_b]c ¢ was widened from @2 to 004 for the ADN system.

ded vectors in the time series, such as autonomous dynamics |, . .
S ) . It is understood that the network does not react to it though
of retrieving are not caused. This proposed system is a model . SN S L
: L éxternal stimulation is input whenis widened as thigig. 14
of the autocorrelation associative memory. However, these ems . ) -
: . shows. In other word, this network model’s recollection does
bedded patterns can be made unstable by external stimulation. . . . : o
: : . not depend on an arbitrary external input spike train but it is
In other words, the trajectories cannot stay for a long time by . .
ertainly driven by synchronous phenomenon of the three neu-
one attractor and wander between these embedded attractors(f()% :
. . S rons{X, Y, Z} in subsystems.
external stimulation which is generated by subsystems that con-
sist of STCL models plus ACD models. This is a phenomenon
that looks like “chaotic itinerancy” that Tsuda1] discovered. 6. Summary
Moreover, it was a system in the research of Aihara €2a]]
based on the nerve model though a similar phenomenon was We proposed a new Lorenz model with an excitatory—
cited. However, the Lorenz chaos of this model is quite unreexcitatory connection matrix (EEC model) or an excitatory—
lated to neurophysiology. It is suggested that these phenomeiizhibitory connection matrix (EIC model) which consists of the
are not only the chaos of the nervous systems but also universgdiree temporal coupling coefficients, 3 and three spatial cou-
characteristics of the chaos that is generated by coupled nonlipling coefficientsdy 2 3. This spatiotemporal coupled Lorenz

ear oscillator systems. model is a model that synchronizes three nonlinear oscillators.

Next, we investigated the influence that the difference of the
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Fig. 14. Retrieving pattern dynamics & = 0.7, r = 0-100 [s]. Top: DDN

Fig. 13. Retrieving pattern dynamics & = 0.7, r = 0-100 [s]. Top: DDN
system § = 0.02), bottom: ADN systems(= 0.04).

system £ = 0.005), bottom: ADN systeme(= 0.02).

7. Outlook

The c12.3 anddy 23 are parameters independent of each ter-

m’s vector, and on-off intermittency observed in this model is [N next paper, we will propose a model of controlling of the
controlled byc1 23 anddy 2 3. In this study, we discover that proposed system that is called “self-reference model”. It is in-
self-organized phase transition phenomena appear in this modéicated to Eq(14) which is modified based on E{L2). Here,

in changing the values af, » 3 anddy > 3. st1 andst, are specifications of the model.

We introduced an abstract coincidence detector model (ACD 2D;(t) — 1 ifr <sty,
model) to evaluate the spatial synchronization of neurons :
) . . S = i (t fsr <t <st, 14
and introduced the Hopfield model to decide the three spatla‘?’( ) vi (£) i< S12 (14)

coupling coefficientsds 2.3 which govern emergent abilities. 2D =1 sz <t.
It showed that boundary regions of each phase of the selBy using this model, we have found a dynamics of the proposed
organized phase transition phenomena which appear in the preystem quite changing after the self-reference. We will report
posed model have information processing ability, and claimedhe detail in next paper.
that a proposed model is useful to an architecture for emergent
subsystems for implementation of an emergent system. Acknowledgements
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